

Minimum Quantity Lubrication (MQL) and Cryogenic Cooling in machining processes

MQL AND CRYOGENIC COOLING in machining processes

BeCold equipment technology combines Minimum Quantity Lubrication (MQL) with cooling provided by liquid CO₂. The **combination of these two systems** results in excellent machining performance.

HRE Hidraulic offers different **BeCold** equipment series which can be adapted to different needs.

WHY USE cryogenic machining?

As a result of the industrial sector becoming highly competitive, **reducing production costs** together with the use of technologies with **lower environmental impact** are vital in the development of new applications.

BeCold equipment is fitted with an innovative system which combines Minimum Quality Lubrication (MQL) and CO₂ cryogenic cooling to achieve performances equivalent or sometimes even better than traditional wet machining.

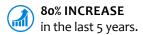
Removing or reducing conventional cutting fluids is paramount to succeed and the advantages offered by Cryogenic Machining make it the best option.

BCD-V2-XXX Cabinet dimensions: 500x500x300mm



main APPLICATIONS

MILLING Finishing


Finishing	Tempered steel		DRILLING	Peck drilling	Titanium	
	Inconel 718				Carbon / Glass fibre	⊘
Roughing	Stainless steel	②	TURNING	Conventional	AISI 304L	
	Aluminium	\bigcirc				
	Cr-Ni steel			Hard-turning	ASP23	\checkmark
	Tool steel	Ŏ				
	Titanium			Use is highly recommended		
	Structural steel			due	to many advantages	
	Carbon / Glass fibre	⊘			ilar to conventional cess, with cost savings	
	Plastics					

I+D+i

PAPERS

recent ARTICLES

CO₂ cryogenic milling of Inconel 718: cutting forces and tool wear https://doi.org/10.1016/j.jmrt.2020.05.118

Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304.

https://doi.org/10.1016/j.jclepro.2016.08.030

Nozzle design for combined use of MQL and cryogenic gas in machining. https://doi.org/10.1007/s40684-017-0012-3

Cryogenic hard turning of ASP23 steel using carbon dioxide. https://doi.org/10.1016/j.proeng.2015.12.523

Internal cryolubrication approach for Inconel 718 milling. https://doi.org/10.1016/j.promfg.2017.09.013

Manufacturing of human knee by cryogenic machining: Walking towards cleaner processes. https://doi.org/10.1016/j.promfg.2019.07.054

Collaborators

HRE Hidraulic S.L.